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Abstract. Quantum mechanics usually describes particles as being pointlike in the sense that,
in principle, the uncertainty,1x, can be made arbitrarily small. Studies on string theory and
quantum gravity motivate correction terms to the uncertainty relations which induce a finite lower
bound1x0 to spatial localization. This structure is implemented into quantum mechanics through
small correction terms to the canonical commutation relations. We calculate the perturbations
to the energy levels of a particle which is non-pointlike in this sense in isotropic harmonic
oscillators, where we find a characteristic splitting of the usually degenerate energy levels.
Possible applications are outlined.

1. Introduction

The existence of a fundamental short distance cut-off has long been conjectured, for well
known conceptual and technical reasons. In this context, recent studies on string theory
and quantum gravity yielded correction terms to the uncertainty relations which imply a
finite minimal uncertainty1x0, e.g. at the Planck scale. A minimal uncertainty,1x0, may
therefore be viewed both as a fuzziness of space-time, or as a fundamental non-pointlikeness
of the elementary ‘particles’ as strings. For examples see [1–4], more recently [5], and recent
reviews are [6, 7]. Technically, we will implement the string/quantum gravity uncertainty
principle through small correction terms to the canonical commutation relations [8, 9].

With the quantum mechanical description of a new short distance structure at hand one
can then ask whether, adjusting the scale appropriately, it may provide a new model for an
effective description not only of strings but also of non-pointlike particles such as quasi-
particles and various collective excitations in solids, or composite particles such as nucleons
and nuclei. For example, nucleons in nuclear potentials or nuclei in molecular potentials
have simple effective quantum mechanical descriptions which normally implicitly assume
them to have a pointlike charge distribution. It should be worth investigating whether the
introduction of a1x0 could provide an effective description which, while still technically
being relatively simple, could within some limits correctly account for effects caused by the
non-pointlike nature, i.e. by the finite spread of the charge distribution, of these particles.

As an example system we study the problem of a particle which is non-pointlike in
this sense in ad-dimensional isotropic harmonic oscillator. The special case of the one-
dimensional oscillator was solved in [10]. The application of different methods now allows
us to perturbatively calculate the spectra for the generald-dimensional case. Our result, a
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characteristic splitting of the usually degenerate energy levels, has only one free parameter,
which is the spatial extend of the oscillating particle. The ansatz is therefore disprovable for
any actual harmonic oscillator system in which the effects of the finite size of the oscillating
particle on the spectrum are measurable.

As an important side-result we show that it is possible to introduce a finite minimal
uncertainty,1x0, without breaking conventional rotation and translation invariance, for
which we give the general condition.

A considerable amount of recent literature exists on various deformations of the
harmonic oscillator, most of which specifically investigates the possibilities of quantum
group symmetry, see e.g. [11–16], which is related to noncommutative geometry [17]. We
remark that our ansatz also originated from studies on quantum group symmetries [18].

2. Heisenberg algebra

We begin with the simple one-dimensional case by considering the associative Heisenberg
algebra generated byx andp with commutation relations

[x,p] = ih̄(1+ βp2) (1)

for some smallβ > 0. The commutation relation yields the uncertainty relation:

1x1p > h̄/2(1+ β(1p)2+ β〈p2〉). (2)

This uncertainty relation is of the type considered in [6, 7], and as is readily checked it
implies a minimal uncertainty in positions1x0 = h̄

√
β.

In d dimensions we consider

[xi ,pj ] = ih̄2ij (p) (3)

with appropriate choices of symmetric2 that induce a minimal uncertainty1x0 > 0. We
will leave momentum space ‘classical’, i.e. [pi ,pj ] = 0. The Jacobi identity and the
requirementsxi = x†i ,pi = p†i then uniquely determine the commutation relations for the,
now in the generic case, noncommutative position operators:

[xi ,xj ] = ih̄{xa,2−1
ar 2s[i2j ]r,s}. (4)

For simplicity we adopted a geometric notation withf,s standing for∂ps f and where repeated
indices are summed over. The associative Heisenberg algebraA finds a Hilbert space
representation, e.g. on momentum space through [19]:

pi .ψ(p) = piψ(p) (5)

xi .ψ(p) = ih̄( 1
22ai,a +2ai∂pa )ψ(p). (6)

If we require rotational isotropy and assume the minimal uncertainty1x0 to be small, the
lowest-order correction terms to the canonical commutation relations read

2ij (p) = δij + βδijp2+ β ′pipj (7)

wherep2 := ∑d
i=1pipi , and whereβ, β ′ > 0 are assumed to be small and of the first

order. The same mechanism as in the one-dimensional case yields from the corresponding
uncertainty relations1xi1pi > |〈[xi ,pj ]〉|/2 an isotropic (i.e.1x0i = 1x0j , ∀i, j ) minimal
uncertainty1x0 (dropping the indexi):

1x0 = h̄
√
βd + β ′. (8)
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The commutation relations in the Heisenberg algebraA then read [pi ,pj ] = 0, and:

[xi ,pj ] = ih̄(δij + βδijp2+ β ′pipj )+O2(β, β ′) (9)

[xi ,xj ] = ih̄(β ′/2− β)({xi ,pj } − {xj ,pi})+O2(β, β ′). (10)

In the momentum representation, where

xi .ψ(p) = ih̄

[(
β + β ′ d + 1

2

)
pi + (δia + βδiap2+ β ′pipa)∂pa

]
ψ(p) (11)

we have to this order:

[xi ,xj ].ψ(p) = h̄2(β ′ − 2β)(pi∂pj − pj∂pi )ψ(p)+O2(β, β ′). (12)

In the caseβ = β ′/2 thexi are commutative, which may therefore be considered a preferred
choice of parameters. The framework is then translation invariant, i.e.pi → pi , xi →
xi + αi defines an algebra homomorphism ofA. More generally, this feature holds for any
2 that obeys (from equation (4)):

2ia∂pi2bc = 2ib∂pi2ac. (13)

In the rotation symmetric case

2ij := δijf (p2)+ g(p2)pipj (14)

this condition then reads

g = 2ff ′(f − 2p2f ′)−1 (15)

where we may choose, e.g.f := eβp
2

to recover to first-order equation (7) withβ ′ = 2β.
Having established that translation and rotation invariance are preserved, let us briefly
discuss how far the approach does differ from the usual quantum mechanical treatment.
Corrections to the commutation relations indeed necessarily induce new physical features,
such as here the appearance of a minimal uncertainty in positions. These features could
not alternatively be described by keeping the ordinary commutation relations and instead
adding corrections to Hamiltonians. This is because for the full set of predictions, such as
spectra, transition probabilities and expectation values to match, systems must be related
by a unitary transformation. However, unitary transformations are commutation relations
preserving: For any commutation relationg(x,p) = 0 with g being a polynomial inx and
p, and all unitary transformationsU : x→ x′ = UxU †,p→ p′ = UpU † there holds

g(x,p) = 0 ⇒ 0= Ug(x,p)U † = g(UxU †, UpU †) = g(x′,p′). (16)

In our case of generalized commutation relations which imply a1x0 > 0, an important
technical consequence is that the generalized commutation relations no longer find a spectral
representation of thexi . To see this, note that generallyQ|λ〉 = λ|λ〉 ⇒ (1Q)|λ〉 = 0. For
the details of the functional analysis see [8]. We remark that in this context the concept of
quasi-position representation has been introduced in [10]. The quasi-position wavefunction
of a state|ψ〉 is defined throughψ(ξ) := 〈φmlξ |ψ〉 where the|φmlξ 〉 are states of now
maximal spatial localization around positionsξ . The states of maximal spatial localization
|φmlξ 〉 obeying

〈φmlξ |x|φmlξ 〉 = ξ 1x|φmlξ 〉 = 1x0 (17)

have been studied in [10, 20], and they reduce of course to the position eigenstates for
1x0 → 0. In [21] the maximal localization states have been calculated for commutation
relations which also include a1p0 > 0.



2096 A Kempf

Finally, we remark that the generalized commutation relations are not Galilean invariant,
i.e. there formally exists a preferred rest frame. This is, however, an artefact of our choice
to only generalize the spatial short distance structure while leaving the time coordinate
unchanged. In four dimensions euclidean rotation and translation invariance turns into
Poincaŕe invariance upon Wick rotation. For studies on euclidean quantum field theory
with the generalized short distance structure see [9, 20], and recently [22].

3. The harmonic oscillator

A low energy approximation for most kinds of oscillations is ad-dimensional harmonic
oscillator, which we, here for simplicity, choose isotropic:

H :=
d∑
i=1

(
p2
i

2m
+ mω

2x2
i

2

)
. (18)

To see that for1x0 > 0, H still has a unique diagonalization, assume the commutation
relations andH represented on some dense domainD in the Hilbert space (below, our
choice ofD will be the S∞ functions on momentum space). Sincep2 is positive andx2

is positivedefinite (〈x2〉 > (1x0)
2), alsoH is positive definite onD. Therefore,H has

exactly one self-adjoint extension in its form domain (see, e.g. [9] and references therein),
with the form domain ofH being the common domain ofx andp, i.e. the physical space
of states.

In Hilbert space representations of the generalized commutation relations the usual
perturbative techniques for the calculation of eigenvalues of Hermitian operators, such as
Hamiltonians, are therefore still applicable. The Hamiltonian acts on momentum space as

H.ψ(p) =
[
p2

2m
− mω

2h̄2

2

d∑
i=1

((
β + β ′ d + 1

2

)
pi + ∂pi + βp2∂pi + β ′pipa∂pa

)2 ]
ψ(p)

(19)

which is, to first order inβ, β ′:

H.ψ(p) =
[
p2

2m
− mω

2h̄2

2
(βd + β ′(d + d2)/2+ (4β + (2+ 2d)β ′)pi∂pi

+2βp2∂2+ 2β ′pipa∂pi ∂pa + ∂2)

]
ψ(p). (20)

Since we are dealing with harmonic oscillators it is convenient to further transform into a
Fock representation where|ψ〉 = ψ(a†)|0〉. The multiplication and differentiation operators
pi and∂pj can be represented through

pj .|ψ〉 = i(mωh̄/2)1/2(a†j − aj )|ψ〉 (21)

∂pj .|ψ〉 = −i(2mωh̄)−1/2(a
†
j + aj )|ψ〉 (22)

whereaia
†
j − a†j ai = δij , so that

pi∂i = −d
2
+ NN-terms (23)

p2∂2 = −N2−N(d + 1)− d(d + 2)

4
+ 1

2

d∑
i,j=1

a2
i a
†
j

2+ NN-terms (24)
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pipj∂i∂j = N + d(d + 4)

4
− 1

2

d∑
i,j=1

a2
i a
†
j

2+ NN-terms (25)

where Ni := a
†
i ai , N := ∑d

i=1Ni , and where NN-terms are terms that contain
nonequal numbers of raising and lowering operators. Substituting equations (23)–(25) into
equation (20) yields for the action ofH on Fock space:

H |ψ〉 =
[
h̄ω

(
N + d

2

)
+mω2h̄2(βN2+ (β(d + 1)− β ′)N + (βd(d + 4)− 3β ′d)/4)

−mω2h̄2β − β ′
2

d∑
i,j=1

a2
i a
†
j

2+ NN-terms

]
|ψ〉. (26)

The natural length scale of the harmonic oscillator is the inverse length in the exponent
of the Hermite functions:(h̄/mω)1/2. Let us replace the parametersβ and β ′ by more
intuitive dimensionless parametersk, k′ which measure the minimal uncertainty length scales
associated withβ and β ′ in units of the length scale of the oscillator (see equation (8)):
k := h̄√β/(h̄/mω)1/2, k′ := h̄√β ′/(h̄/mω)1/2, i.e. we haveβ = k2/mωh̄, β ′ = k′2/mωh̄
and thus, from equation (8),

1x0 =
√
k2d + k′2

√
h̄

mω
(27)

so that

H |ψ〉 = h̄ω
[
N + d

2
+ k2N2+ (k2(d + 1)− k′2)N + k2d(d + 4)− 3k′2d

4

−k
2− k′2

2

d∑
i,j=1

a2
i a
†
j

2+ NN-terms

]
|ψ〉. (28)

4. First-order corrections to the spectra

We read from equation (28) thatH consists of a diagonal part with degenerate eigenvalues
(in more than one dimension), and a nondiagonal term

∑d
i,j=1 a

2
i a
†
j

2 proportional to
(k2 − k′2). As a new effect, this nondiagonal term can lead to a splitting of the normally
g(n, d)-fold degenerate eigenvaluesEn of the d-dimensional isotropic harmonic oscillator.
We recall the degeneracy function:g(n, d) = (n+d−1)!

n!(d−1)! . As is well known, in the calculation
of the eigenvalues ofA := B + C, for A,B,C Hermitian, the first-order perturbative
corrections to degenerate eigenvalues ofB are the eigenvalues of the perturbing matrixC
when restricted to the corresponding eigenspaces.
Thus, here theg(n, d)-fold degenerate energy levelsEn split into levelsE′nr :

E′nr (k, k
′) = h̄ω

(
n+ d

2
+ k2n2+ k2(d + 1)n− k′2n+ k

2d(d + 4)− 3k′2d
4

− k
2− k′2

2

×rth eigenvalue

[( d∑
i,j=1

a2
i a
†
j

2

)∣∣∣∣
Hn

])
(29)

where r = 1, 2, . . . , g(n, d) and where the eigenspacesHn of the diagonal part of the
Hamiltonian are

Hn := span

{
(r1! · . . . · rd !)−1/2a

†
1
r1 · . . . · a†d rd |0〉

∣∣∣∣ d∑
i=1

ri = n
}
. (30)
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The matrix elements of NN-terms vanish inHn, i.e. form =∑d
i=1 ri =

∑d
i=1 si there holds

〈0|as11 · . . . ·asdd (NN-terms)a†1
r1 . . . a

†
d
rd |0〉 = 0, so that the NN-terms of equation (28) do not

contribute in equation (29).
For the calculation of the eigenvalues of

∑d
i,j=1 a

2
i a
†
j

2 in Hn we can choose theON-basis

given in equation (30) to obtain the matrix elements (n =∑d
i=1 ri =

∑d
i=1 si):

〈r1, . . . , rd |
d∑
i,j

a2
i a
†
j

2|s1, . . . , sd〉 =
d∑

i,j=1

√
(ri + 1)(ri + 2)(sj + 1)(sj + 2)

×δr1,s1 . . . δri+2,si . . . δrj ,sj+2 . . . δrd ,sd . (31)

We begin with the one-dimensional case. For this case the momentum space Schrödinger
equation proved to be exactly solvable in terms of hypergeometric functions, yielding to
first order inβ, from equations (53), (56), (69) of [10]:

E′n = h̄ω(n+ 1
2)+mω2h̄2β(n2/2+ n/2+ 1

4). (32)

Indeed, we recover this result from equations (26) and (29) as the special cased = 1 (note
that a2a†2 = N2+ 3N + 2 and thatβ + β ′, corresponds toβ in [10]).
For d = 2, a straightforward calculation now yields theg(n, 2) = n + 1 eigenvalues
of
∑2

i,j=1 a
2
i a
†
j

2 in Hn. If n is odd, these can be put into the form 4s(n + 2 − s) for
s = 1, . . . , (n + 1)/2 with all eigenvalues two-fold degenerate. Forn even, s runs
s = 1, . . . , (n + 2)/2 with the last eigenvalue nondegenerate. Using equation (29) we
therefore obtain the energy levels ford = 2 (with the degeneracies given within brackets):

E′nr (k, k
′) = h̄ω

[
n+ 1+ k2(n2+ 3n+ 3)− k′2(n+ 3

2)

−(k2− k′2)



2 · 1(n+ 2− 1) (2×)
2 · 2(n+ 2− 2) (2×)
2 · 3(n+ 2− 3) (2×)
...

(n+ 1)(n+ 3)/2 (2×) for n odd

(n+ 2)2/2 (1×) for n even .

(33)

Of special interest is the three-dimensional oscillator. To illustrate the calculation, consider
e.g. the splitting of the second excited energy levelE2. We may choose as anON -basis of
H2 (see equation (30)):e1 := |2, 0, 0〉, e2 := |0, 2, 0〉, e3 := |0, 0, 2〉, e4 := |0, 1, 1〉, e5 :=
|1, 0, 1〉, e6 := |1, 1, 0〉, in which:

( d∑
i,j=1

a2
i a
†
j

2

)∣∣∣∣
H2

=


16 2 2 0 0 0
2 16 2 0 0 0
2 2 16 0 0 0
0 0 0 14 0 0
0 0 0 0 14 0
0 0 0 0 0 14

 . (34)

The eigenvalues are: 14, 14, 14, 14, 14, 20. Thus, the ordinarily six-fold degenerate second-
excited level,E2, splits into two energy levels, one of which is five-fold degenerate and
one nondegenerate (see equation(37)). The calculation of the first few excited states shows
the systematics in the splitting of the levels:

E′0 = h̄ω
[

3

2
+ 21k2− 9k′2

4
− (k2− k′2) · 3 (1×)

]
(35)
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E′1r = h̄ω
[

5

2
+ 41k2− 13k′2

4
− (k2− k′2) · 5 (3×)

]
(36)

E′2r = h̄ω
[

7

2
+ 69k2− 17k′2

4
− (k2− k′2) ·

{
7 (5×)
10 (1×)

]
(37)

E′3r = h̄ω
[

9

2
+ 105k2− 21k′2

4
− (k2− k′2) ·

{
9 (7×)
14 (3×)

]
(38)

E′4r = h̄ω

11

2
+ 149k2− 25k′2

4
− (k2− k′2) ·


11 (9×)
18 (5×)
21 (1×)

 (39)

E′5r = h̄ω

13

2
+ 201k2− 29k′2

4
− (k2− k′2) ·


13 (11×)
22 (7×)
27 (3×)

 . (40)

5. The translation invariant case

The splitting of the energy levels for the casek′2 = 2k2 is interesting since the framework
is then translation invariant and thexi commute (equation (12)). (Note that there would be
no splitting fork′2 = k2.)

E′0 = 3
2h̄ω + 3

4(1x0)
2mω2 (1×) (41)

E′1r = 5
2h̄ω + 3

4(1x0)
2mω2 (3×) (42)

E′2r = 7
2h̄ω + (1x0)

2mω2 ·
{

63
20 (5×)
15
4 (1×) (43)

E′3r = 9
2h̄ω + (1x0)

2mω2 ·
{

99
20 (7×)
119
20 (3×) (44)

E′4r = 11
2 h̄ω + (1x0)

2mω2 ·


143
20 (9×)
171
20 (5×)
183
20 (1×)

(45)

E′5r = 13
2 h̄ω + (1x0)

2mω2 ·


195
20 (11×)
231
20 (7×)
251
20 (3×)

. (46)

Equations (41)–(46) give the first few levels for this case andd = 3, expressed in terms of
the, then only, free parameter1x0. The removal of the degeneracy implies that1x0 > 0
breaks the accidental dynamicalSU(n) symmetry of the harmonical oscillator. On the
other hand, due to the conservation of theSO(n) symmetry,m-degeneracy is not removed.
This allows us to read the angular momenta of the perturbed levels from their remaining
degeneracy. We include the angular momentum quantum numbers on the graph of the
spectrum in figure 1.

We observe that, as an overall feature of the model, the effect of the non-pointlikeness
generally perturbs the energy levels upwards. These perturbations therefore characteristically
go in the opposite direction to the in oscillators normally to be expected energy level
lowering effect of the eventual anharmonic flattening of the potential.
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Figure 1. Splitting of the energy levels of the three-dimensional isotropic harmonic oscillator
for a non-pointlike particle with relative sizek = 1

10.

6. Outlook

Similar perturbative methods could be applied, for example to the case of the Coulomb
potential. This should allow us to obtain the relation between the scale of an assumed
fundamental non-pointlikeness1x0 of the electron and the scale of the thereby caused effects
on the hydrogen spectrum. The results of high precision hydrogen spectroscopy are very
closely matched by perturbative field theoretical calculations which, by involving higher-
order perturbation theory, probe high energies and small distances. Since spectroscopy is
low energy, the scale of the sensitivity of the spectroscopic data on an assumed fundamental
non-pointlikeness of the electron in the form of a nonvanishing1x0 should be of interest,
even if the so obtained upper bound for1x0 will not be as small as the well known present
accelerator-based experimental upper bound of about 1 TeV or 10−16 cm.

In the context of a possible fundamental1x0, recent studies on minimal uncertainties
and regularization in field theory are [9, 20], with related studies being [23, 24].
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